Fitting A Line

4.0 What We Need to Know When We Finish This Chapter 88
4.1 Introduction 90
4.2 Which Line Fits Best? 91
4.3 Minimizing the Sum of Squared Errors 95
4.4 Calculating the Intercept and Slope 103
4.5 What, Again, Do the Slope and Intercept Mean? 107
4.6 R^{2} and the Fit of This Line 110
4.7 Let's Run a Couple of Regressions 117
4.8 Another Example 120
4.9 Conclusion 122
Appendix to Chapter 4 123
Exercises 128
4.0 What We Need to Know When We Finish This Chapter

This chapter develops a simple method to measure the magnitude of the association between two variables in a sample. The generic name for this method
is regression analysis. The precise name, in the case of only two variables, is bivariate regression. It assumes that the variable X causes the variable Y. It identifies the best-fitting line as that which minimizes the sum of squared errors in the Y dimension. The quality of this fit is measured informally by the proportion of the variance in Y that is explained by the variance in X. Here are the essentials.

1. Equation (4.1), section 4.3: The regression line predicts y_{i} as a linear function of x_{i} :

$$
\hat{y}_{i}=a+b x_{i} .
$$

2. Equation (4.2), section 4.3: The regression error is the difference between the actual value of y_{i} and the value predicted by the regression line:
$e_{i}=y_{i}-\hat{y}_{i}$.
3. Equation (4.20), section 4.3: The average error for the regression line is equal to zero:
$\bar{e}=0$.
4. Equation (4.28), section 4.3: The errors are uncorrelated with the explanatory variable:
$\operatorname{CORR}(e, X)=0$.
5. Equation (4.35), section 4.4: The regression intercept is the difference between the average value of Y and the slope times the average value of X :
$a=\bar{y}-b \bar{x}$.
6. Equation (4.40), section 4.5: The slope is a function of only the observed values of x_{i} and y_{i} in the sample:

$$
b=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
$$

7. Equation (4.57), section 4.6: The R^{2} measures the strength of the association represented by the regression line:

$$
R^{2}=1-\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=\frac{b^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} .
$$

8. Equations (4.58) and (4.59), section 4.6: The R^{2} in the bivariate regression is equal to the squared correlation between X and Y and to the squared correlation between Y and its predicted values:

$$
R^{2}=(\operatorname{CORR}(X, Y))^{2}=(\operatorname{CORR}(Y, \hat{Y}))^{2} .
$$

