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4.0 What We Need to Know When We Finish This Chapter

This chapter develops a simple method to measure the magnitude of the asso-
ciation between two variables in a sample. The generic name for this method 
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is regression analysis. The precise name, in the case of only two variables, 
is bivariate regression. It assumes that the variable X causes the variable Y. 
It identifies the best-fitting line as that which minimizes the sum of squared 
errors in the Y dimension. The quality of this fit is measured informally by the 
proportion of the variance in Y that is explained by the variance in X. Here 
are the essentials.

1. Equation (4.1), section 4.3: The regression line predicts yi as a linear 
function of xi:

ˆ .y a bxi i= +

2. Equation (4.2), section 4.3: The regression error is the difference 
 between the actual value of yi and the value predicted by the regres-
sion line:

e y yi i i= − ˆ .

3. Equation (4.20), section 4.3: The average error for the regression line 
is equal to zero:

e = 0.

4. Equation (4.28), section 4.3: The errors are uncorrelated with the 
 explanatory variable:

CORR e X, .( ) = 0

5. Equation (4.35), section 4.4: The regression intercept is the differ-
ence between the average value of Y and the slope times the average 
value of X:

a y bx= − .

6. Equation (4.40), section 4.5: The slope is a function of only the 
 observed values of xi and yi in the sample:
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7. Equation (4.57), section 4.6: The R2 measures the strength of the 
association represented by the regression line:
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8. Equations (4.58) and (4.59), section 4.6: The R2 in the bivariate 
regression is equal to the squared correlation between X and Y and 
to the squared correlation between Y and its predicted values:

R X Y Y Y2 2 2
= ( )( ) = ( )( )CORR CORR, , ˆ .

4.1 Introduction

It’s unquestionably nice to know the direction, if any, in which X and Y are 
associated. So the covariance is a handy thing to have around. It’s also useful 
to know the reliability of that association, for which we can thank the correla-
tion. In many cases, however, this is not enough.

For example, most of us would not be willing to enroll in another year of 
schooling if all we knew was that it was pretty likely to raise our subsequent earn-
ings. Schooling, as we are well aware, is expensive. We pay tuition, we pay for 
textbooks, and, what is often most important, we forgo the income that we would 
have earned had we worked instead. So what we need to know is not whether our 
future incomes will increase with more education, but, rather, whether they will 
increase by enough to compensate us for the costs of that education.

In other words, we need an estimate of the magnitude of the association, 
how much of a change in income we can expect for a given change in educa-
tion. More generally, we’d like to estimate what change in Y, ΔY, is associated 
with any particular change in X, ΔX. In mathematical notation, we’re inter-
ested in the ratio of the two:

∆
∆

Y

X
.

This ratio is immediately recognizable as the slope of a line. It shows us 
that we can identify the magnitude of the association between X and Y by fit-
ting a line to the data in our sample.1
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